10分钟了解pandas

这是对pandas的简短介绍,主要面向新用户。您可以在Cookbook中查看更复杂的手册

通常,我们导入如下:

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

创建对象

请参见Data Structure Intro section

通过传递值列表创建Series,让pandas创建一个默认整数索引:

In [4]: s = pd.Series([1,3,5,np.nan,6,8])

In [5]: s
Out[5]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

通过传递numpy数组,使用datetime索引和标记的列来创建DataFrame

In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates
Out[7]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

In [9]: df
Out[9]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

通过传递可以转换为类系列的对象的dict来创建DataFrame

In [10]: df2 = pd.DataFrame({ 'A' : 1.,
   ....:                      'B' : pd.Timestamp('20130102'),
   ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
   ....:                      'D' : np.array([3] * 4,dtype='int32'),
   ....:                      'E' : pd.Categorical(["test","train","test","train"]),
   ....:                      'F' : 'foo' })
   ....: 

In [11]: df2
Out[11]: 
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo

具有特定dtypes

In [12]: df2.dtypes
Out[12]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

如果使用IPython,则会自动启用列名称(以及公共属性)的制表符完成。这里是将要完成的属性的一个子集:

In [13]: df2.<TAB>
df2.A                  df2.boxplot
df2.abs                df2.C
df2.add                df2.clip
df2.add_prefix         df2.clip_lower
df2.add_suffix         df2.clip_upper
df2.align              df2.columns
df2.all                df2.combine
df2.any                df2.combineAdd
df2.append             df2.combine_first
df2.apply              df2.combineMult
df2.applymap           df2.compound
df2.as_blocks          df2.consolidate
df2.asfreq             df2.convert_objects
df2.as_matrix          df2.copy
df2.astype             df2.corr
df2.at                 df2.corrwith
df2.at_time            df2.count
df2.axes               df2.cov
df2.B                  df2.cummax
df2.between_time       df2.cummin
df2.bfill              df2.cumprod
df2.blocks             df2.cumsum
df2.bool               df2.D

正如您所看到的,ABCDE也是;为了简洁,其余的属性已被截断。

浏览数据

请参阅Basics section

查看数据框的头部和尾部数据

In [14]: df.head()
Out[14]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

In [15]: df.tail(3)
Out[15]: 
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

显示索引,列和基础numpy数据

In [16]: df.index
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

In [17]: df.columns
Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')

In [18]: df.values
Out[18]: 
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7216, -0.7068, -1.0396,  0.2719],
       [-0.425 ,  0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784,  0.525 ]])

describe()显示您的数据的快速统计摘要

In [19]: df.describe()
Out[19]: 
              A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

转置数据

In [20]: df.T
Out[20]: 
   2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

按轴排序

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                   D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

按值排序

In [22]: df.sort_values(by='B')
Out[22]: 
                   A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

Selection

注意

尽管标准的Python / Numpy 选择、设置表达式是非常符合直觉的,而且在交互式的工作中很容易上手,但是如果是在真实的“生产力代码”中,我们还是推荐使用已经优化好的pandas数据访问方式,比如: .at, .iat, .loc, .iloc.ix

请参阅索引文档Indexing and Selecting DataMultiIndex / Advanced Indexing

Getting

选择单个列,产生Series,等效于df.A

In [23]: df['A']
Out[23]: 
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64

通过[]选择,通过切片选择行。

In [24]: df[0:3]
Out[24]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [25]: df['20130102':'20130104']
Out[25]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

Selection by Label

Selection by Label中查看更多内容

使用标签获取横截面

In [26]: df.loc[dates[0]]
Out[26]: 
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

按标签选择多轴

In [27]: df.loc[:,['A','B']]
Out[27]: 
                   A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

显示标签切片,两个端点都包含

In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]: 
                   A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

减少返回对象的维度

In [29]: df.loc['20130102',['A','B']]
Out[29]: 
A    1.212112
B   -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

获取标量值

In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

为了获得对标量的快速访问(等同于之前的方法)

In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

Selection by Position

Selection by Position中查看更多内容

通过传递的整数的位置选择

In [32]: df.iloc[3]
Out[32]: 
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64

通过整数切片,行为类似于numpy / python

In [33]: df.iloc[3:5,0:2]
Out[33]: 
                   A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

通过整数位置的列表选择数据,类似于numpy / python样式

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]: 
                   A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

用于显式切片行

In [35]: df.iloc[1:3,:]
Out[35]: 
                   A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

显式切片列

In [36]: df.iloc[:,1:3]
Out[36]: 
                   B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

显式获取值

In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858

为了获得对标量的快速访问(等同于现有方法)

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

Boolean Indexing

使用单个列的值的条件来选择数据。

In [39]: df[df.A > 0]
Out[39]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

A where方法获取数据。

In [40]: df[df > 0]
Out[40]: 
                   A         B         C         D
2013-01-01  0.469112       NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209       NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN
2013-01-06       NaN  0.113648       NaN  0.524988

使用isin()方法进行过滤:

In [41]: df2 = df.copy()

In [42]: df2['E'] = ['one', 'one','two','three','four','three']

In [43]: df2
Out[43]: 
                   A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three

In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]: 
                   A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

Setting

设置新列会自动按索引对齐数据

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]: 
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64

In [47]: df['F'] = s1

按标签设置值

In [48]: df.at[dates[0],'A'] = 0

按位置设置值

In [49]: df.iat[0,1] = 0

通过分配numpy数组进行设置

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

先前设置操作的结果

In [51]: df
Out[51]: 
                   A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059  5  NaN
2013-01-02  1.212112 -0.173215  0.119209  5  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
2013-01-05 -0.424972  0.567020  0.276232  5  4.0
2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

A where操作与设置。

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]: 
                   A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

Missing Data

pandas主要使用值np.nan来表示缺失的数据。在计算中是默认不包括缺失值的。请参阅Missing Data section

reindexing允许您更改/添加/删除指定轴上的索引。这将返回数据的副本。

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1

In [57]: df1
Out[57]: 
                   A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

使用drop方法删除任何含有缺少数据的行。

In [58]: df1.dropna(how='any')
Out[58]: 
                   A         B         C  D    F    E
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

filling方法填充缺失值

In [59]: df1.fillna(value=5)
Out[59]: 
                   A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

使用isnull方获取值为nan的布尔值

In [60]: pd.isnull(df1)
Out[60]: 
                A      B      C      D      F      E
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

Operations

请参阅Basic section on Binary Ops

Stats

一般操作排除缺失值。

执行(axis=0)描述性统计

In [61]: df.mean()
Out[61]: 
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

执行列(axis=1)描述统计

In [62]: df.mean(1)
Out[62]: 
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

使用具有不同维度并需要对齐的对象进行操作。此外,pandas会自动沿指定的维度广播。

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)

In [64]: s
Out[64]: 
2013-01-01    NaN
2013-01-02    NaN
2013-01-03    1.0
2013-01-04    3.0
2013-01-05    5.0
2013-01-06    NaN
Freq: D, dtype: float64

In [65]: df.sub(s, axis='index')
Out[65]: 
                   A         B         C    D    F
2013-01-01       NaN       NaN       NaN  NaN  NaN
2013-01-02       NaN       NaN       NaN  NaN  NaN
2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
2013-01-06       NaN       NaN       NaN  NaN  NaN

Apply

使用apply方法将函数用于数据

In [66]: df.apply(np.cumsum)
Out[66]: 
                   A         B         C   D     F
2013-01-01  0.000000  0.000000 -1.509059   5   NaN
2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0

In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]: 
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64

Histogramming

有关详情,请参阅Histogramming and Discretization

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]: 
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64

In [70]: s.value_counts()
Out[70]: 
4    5
6    2
2    2
1    1
dtype: int64

字符串方法

Series 的str属性配置了一组字符串处理方法,可以方便地对数组的每个元素进行操作,如下面的代码段所示。注意,str中的模式匹配默认使用正则表达式(在某些情况下总是使用它们)。查看更多Vectorized String Methods

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

Merge

Concat

pandas提供了各种方法,以便在连接/合并类型操作的情况下,轻松地将Series,DataFrame和Panel对象与索引的各种集合逻辑以及关系代数功能组合在一起。

请参阅Merging section

将pandas对象与concat()连接在一起:

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]: 
          0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

Join

SQL样式合并。请参阅Database style joining

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]: 
   key  lval
0  foo     1
1  foo     2

In [80]: right
Out[80]: 
   key  rval
0  foo     4
1  foo     5

In [81]: pd.merge(left, right, on='key')
Out[81]: 
   key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

可以给出的另一个示例是:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [84]: left
Out[84]: 
   key  lval
0  foo     1
1  bar     2

In [85]: right
Out[85]: 
   key  rval
0  foo     4
1  bar     5

In [86]: pd.merge(left, right, on='key')
Out[86]: 
   key  lval  rval
0  foo     1     4
1  bar     2     5

Append

将行附加到数据框。请参阅Appending

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [88]: df
Out[88]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758

In [89]: s = df.iloc[3]

In [90]: df.append(s, ignore_index=True)
Out[90]: 
          A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610

Grouping

“分组”是指涉及一个或多个以下步骤的过程

  • 根据某些条件将数据拆分成组
  • 对每个组独立应用功能
  • 结果合并到一个数据结构中

请参阅Grouping section

In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
   ....:                           'foo', 'bar', 'foo', 'foo'],
   ....:                    'B' : ['one', 'one', 'two', 'three',
   ....:                           'two', 'two', 'one', 'three'],
   ....:                    'C' : np.random.randn(8),
   ....:                    'D' : np.random.randn(8)})
   ....: 

In [92]: df
Out[92]: 
     A      B         C         D
0  foo    one -1.202872 -0.055224
1  bar    one -1.814470  2.395985
2  foo    two  1.018601  1.552825
3  bar  three -0.595447  0.166599
4  foo    two  1.395433  0.047609
5  bar    two -0.392670 -0.136473
6  foo    one  0.007207 -0.561757
7  foo  three  1.928123 -1.623033

分组,然后对结果组应用函数sum

In [93]: df.groupby('A').sum()
Out[93]: 
            C        D
A                     
bar -2.802588  2.42611
foo  3.146492 -0.63958

通过多个列分组形成层次索引,然后我们应用该函数。

In [94]: df.groupby(['A','B']).sum()
Out[94]: 
                  C         D
A   B                        
bar one   -1.814470  2.395985
    three -0.595447  0.166599
    two   -0.392670 -0.136473
foo one   -1.195665 -0.616981
    three  1.928123 -1.623033
    two    2.414034  1.600434

Reshaping

请参阅Hierarchical IndexingReshaping部分。

Stack

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
   ....:                      'foo', 'foo', 'qux', 'qux'],
   ....:                     ['one', 'two', 'one', 'two',
   ....:                      'one', 'two', 'one', 'two']]))
   ....: 

In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [98]: df2 = df[:4]

In [99]: df2
Out[99]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230

stack()方法“压缩”DataFrame的列中的一个级别。

In [100]: stacked = df2.stack()

In [101]: stacked
Out[101]: 
first  second   
bar    one     A    0.029399
               B   -0.542108
       two     A    0.282696
               B   -0.087302
baz    one     A   -1.575170
               B    1.771208
       two     A    0.816482
               B    1.100230
dtype: float64

对于“堆叠”DataFrame或系列(具有MultiIndex作为index),stack()的逆操作是unstack(),默认情况下会取消堆栈最后一个级别

In [102]: stacked.unstack()
Out[102]: 
                     A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230

In [103]: stacked.unstack(1)
Out[103]: 
second        one       two
first                      
bar   A  0.029399  0.282696
      B -0.542108 -0.087302
baz   A -1.575170  0.816482
      B  1.771208  1.100230

In [104]: stacked.unstack(0)
Out[104]: 
first          bar       baz
second                      
one    A  0.029399 -1.575170
       B -0.542108  1.771208
two    A  0.282696  0.816482
       B -0.087302  1.100230

Pivot Tables

请参阅Pivot Tables部分。

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
   .....:                    'B' : ['A', 'B', 'C'] * 4,
   .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
   .....:                    'D' : np.random.randn(12),
   .....:                    'E' : np.random.randn(12)})
   .....: 

In [106]: df
Out[106]: 
        A  B    C         D         E
0     one  A  foo  1.418757 -0.179666
1     one  B  foo -1.879024  1.291836
2     two  C  foo  0.536826 -0.009614
3   three  A  bar  1.006160  0.392149
4     one  B  bar -0.029716  0.264599
5     one  C  bar -1.146178 -0.057409
6     two  A  foo  0.100900 -1.425638
7   three  B  foo -1.035018  1.024098
8     one  C  foo  0.314665 -0.106062
9     one  A  bar -0.773723  1.824375
10    two  B  bar -1.170653  0.595974
11  three  C  bar  0.648740  1.167115

我们可以非常容易地从这些数据生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]: 
C             bar       foo
A     B                    
one   A -0.773723  1.418757
      B -0.029716 -1.879024
      C -1.146178  0.314665
three A  1.006160       NaN
      B       NaN -1.035018
      C  0.648740       NaN
two   A       NaN  0.100900
      B -1.170653       NaN
      C       NaN  0.536826

Time Series

pandas具有用于在频率转换期间执行重采样操作(例如,将数据转换为5分钟数据)的简单,强大和高效的功能。这在金融应用中是非常常见的,但不限于此。请参阅Time Series section

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [110]: ts.resample('5Min').sum()
Out[110]: 
2012-01-01    25083
Freq: 5T, dtype: int64

时区表示

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [113]: ts
Out[113]: 
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D, dtype: float64

In [114]: ts_utc = ts.tz_localize('UTC')

In [115]: ts_utc
Out[115]: 
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D, dtype: float64

转换到另一个时区

In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]: 
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D, dtype: float64

时间跨度表示之间的转换

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [119]: ts
Out[119]: 
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64

In [120]: ps = ts.to_period()

In [121]: ps
Out[121]: 
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64

In [122]: ps.to_timestamp()
Out[122]: 
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64

周期和时间戳之间的转换使一些方便的算术功能可以使用。在下面的示例中,我们将季度频率转换为以11月结束的年度到季度结束之后的月底的9am:

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [126]: ts.head()
Out[126]: 
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64

Categoricals

自0.15版以来,pandas可以在DataFrame中包含类别数据。有关完整的文档,请参阅categorical introductionAPI documentation

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

将原始成绩转换为分类数据类型。

In [128]: df["grade"] = df["raw_grade"].astype("category")

In [129]: df["grade"]
Out[129]: 
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

将类别重命名为更有意义的名称(分配到Series.cat.categories是inplace!)

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

Reorder the categories and simultaneously add the missing categories (methods under Series .cat return a new Series per default).

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [132]: df["grade"]
Out[132]: 
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

类的序是类别中的序,而不是词汇顺序。

In [133]: df.sort_values(by="grade")
Out[133]: 
   id raw_grade      grade
5   6         e   very bad
1   2         b       good
2   3         b       good
0   1         a  very good
3   4         a  very good
4   5         a  very good

按类别列分组也会显示空类别。

In [134]: df.groupby("grade").size()
Out[134]: 
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64

Plotting

Plotting文档。

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

In [136]: ts = ts.cumsum()

In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2ab2af550>
http://pandas.pydata.org/pandas-docs/version/0.19.2/_images/series_plot_basic.png

在DataFrame上,plot()是方便绘制所有带标签的列:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
   .....:                   columns=['A', 'B', 'C', 'D'])
   .....: 

In [139]: df = df.cumsum()

In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[140]: <matplotlib.legend.Legend at 0x7ff29c8163d0>
http://pandas.pydata.org/pandas-docs/version/0.19.2/_images/frame_plot_basic.png

Getting Data In/Out

CSV

Writing to a csv file

In [141]: df.to_csv('foo.csv')

Reading from a csv file

In [142]: pd.read_csv('foo.csv')
Out[142]: 
     Unnamed: 0          A          B         C          D
0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
..          ...        ...        ...       ...        ...
993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 5 columns]

HDF5

读取和写入HDFStores

写入HDF5存储

In [143]: df.to_hdf('foo.h5','df')

从HDF5商店读取

In [144]: pd.read_hdf('foo.h5','df')
Out[144]: 
                    A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 4 columns]

Excel

读取和写入MS Excel

写入excel文件

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

从excel文件读取

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[146]: 
                    A          B         C          D
2000-01-01   0.266457  -0.399641 -0.219582   1.186860
2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
2000-01-03  -1.734933   0.530468  2.060811  -0.515536
2000-01-04  -1.555121   1.452620  0.239859  -1.156896
2000-01-05   0.578117   0.511371  0.103552  -2.428202
2000-01-06   0.478344   0.449933 -0.741620  -1.962409
2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
...               ...        ...       ...        ...
2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
2002-09-26 -11.856774 -10.671012 -3.216025  29.369368

[1000 rows x 4 columns]

Gotchas

如果你正在尝试一个操作,你会看到一个异常:

>>> if pd.Series([False, True, False]):
    print("I was true")
Traceback
    ...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

有关说明和操作,请参见Comparisons

请参阅Gotchas

Scroll To Top