Writing your own ufunc¶
Creating a new universal function¶
在阅读本文之前,通过阅读/略过扩展和嵌入Python解释器第1部分和如何扩展NumPy中的教程,可以帮助您熟悉Python的C扩展的基础知识
umath模块是一个计算机生成的C模块,创建许多ufunc。它提供了许多如何创建通用函数的示例。创建自己的ufunc将利用ufunc机制也不难。假设你有一个函数,你想要通过它的输入逐个元素操作。通过创建一个新的ufunc你将获得一个处理的函数
- 广播
- N维循环
- 具有最小内存使用率的自动类型转换
- 可选输出数组
创建自己的ufunc是不难的。所需要的是每个数据类型的1-d循环你想支持。每个1-d循环必须具有特定的签名,并且只能使用固定大小数据类型的ufuncs。下面给出了用于创建新的ufunc以处理内置数据类型的函数调用。不同的机制用于为用户定义的数据类型注册ufunc。
在接下来的几节中,我们给出了可以轻松修改以创建自己的ufuncs的示例代码。示例是相继更完整或复杂的logit函数版本,logit函数是统计建模中的常用函数。Logit也很有趣,因为由于IEEE标准(特别是IEEE 754)的魔力,下面创建的所有logit函数自动具有以下行为。
>>> logit(0)
-inf
>>> logit(1)
inf
>>> logit(2)
nan
>>> logit(-2)
nan
这是奇妙的,因为函数编写器不必手动传播inf或nans。
Example Non-ufunc extension¶
为了比较和阅读器的一般化,我们提供了一个使用no numpy的log扩展的简单实现。
为此,我们需要两个文件。第一个是包含实际代码的C文件,第二个是用于创建模块的setup.py文件。
#include <Python.h> #include <math.h> /* * spammodule.c * This is the C code for a non-numpy Python extension to * define the logit function, where logit(p) = log(p/(1-p)). * This function will not work on numpy arrays automatically. * numpy.vectorize must be called in python to generate * a numpy-friendly function. * * Details explaining the Python-C API can be found under * 'Extending and Embedding' and 'Python/C API' at * docs.python.org . */ /* This declares the logit function */ static PyObject* spam_logit(PyObject *self, PyObject *args); /* * This tells Python what methods this module has. * See the Python-C API for more information. */ static PyMethodDef SpamMethods[] = { {"logit", spam_logit, METH_VARARGS, "compute logit"}, {NULL, NULL, 0, NULL} }; /* * This actually defines the logit function for * input args from Python. */ static PyObject* spam_logit(PyObject *self, PyObject *args) { double p; /* This parses the Python argument into a double */ if(!PyArg_ParseTuple(args, "d", &p)) { return NULL; } /* THE ACTUAL LOGIT FUNCTION */ p = p/(1-p); p = log(p); /*This builds the answer back into a python object */ return Py_BuildValue("d", p); } /* This initiates the module using the above definitions. */ #if PY_VERSION_HEX >= 0x03000000 static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "spam", NULL, -1, SpamMethods, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit_spam(void) { PyObject *m; m = PyModule_Create(&moduledef); if (!m) { return NULL; } return m; } #else PyMODINIT_FUNC initspam(void) { PyObject *m; m = Py_InitModule("spam", SpamMethods); if (m == NULL) { return; } } #endif
要使用setup.py文件,请将setup.py和spammodule.c放在同一个文件夹中。然后python setup.py build将构建导入模块,或者setup.py install会将模块安装到你的site-packages目录。
''' setup.py file for spammodule.c Calling $python setup.py build_ext --inplace will build the extension library in the current file. Calling $python setup.py build will build a file that looks like ./build/lib*, where lib* is a file that begins with lib. The library will be in this file and end with a C library extension, such as .so Calling $python setup.py install will install the module in your site-packages file. See the distutils section of 'Extending and Embedding the Python Interpreter' at docs.python.org for more information. ''' from distutils.core import setup, Extension module1 = Extension('spam', sources=['spammodule.c'], include_dirs=['/usr/local/lib']) setup(name = 'spam', version='1.0', description='This is my spam package', ext_modules = [module1])
一旦垃圾邮件模块导入到python,你可以通过spam.logit调用logit。注意,上面使用的函数不能应用于numpy数组。为此,我们必须调用numpy.vectorize。例如,如果在包含垃圾邮件库或垃圾邮件的文件中打开了一个python解释器,则可以执行以下命令:
>>> import numpy as np
>>> import spam
>>> spam.logit(0)
-inf
>>> spam.logit(1)
inf
>>> spam.logit(0.5)
0.0
>>> x = np.linspace(0,1,10)
>>> spam.logit(x)
TypeError: only length-1 arrays can be converted to Python scalars
>>> f = np.vectorize(spam.logit)
>>> f(x)
array([ -inf, -2.07944154, -1.25276297, -0.69314718, -0.22314355,
0.22314355, 0.69314718, 1.25276297, 2.07944154, inf])
结果逻辑函数不快!numpy.vectorize只是循环遍历spam.logit。循环在C级完成,但numpy数组不断被解析和构建。这是昂贵的。当作者将numpy.vectorize(spam.logit)与下面构建的logit ufuncs进行比较时,logit ufuncs几乎快了4倍。根据功能的性质,更大或更小的加速当然是可能的。
Example NumPy ufunc for one dtype¶
为了简单起见,我们给出一个单一dtype的ufunc,'f8'double。如上一节所述,我们首先给出.c文件,然后是setup.py文件,用于创建包含ufunc的模块。
对应于ufunc的实际计算的代码中的位置用/ * BEGIN主ufunc计算* /和/ * END main ufunc计算* /标记。这些行之间的代码是必须更改的主要事情,以创建自己的ufunc。
#include "Python.h" #include "math.h" #include "numpy/ndarraytypes.h" #include "numpy/ufuncobject.h" #include "numpy/npy_3kcompat.h" /* * single_type_logit.c * This is the C code for creating your own * NumPy ufunc for a logit function. * * In this code we only define the ufunc for * a single dtype. The computations that must * be replaced to create a ufunc for * a different function are marked with BEGIN * and END. * * Details explaining the Python-C API can be found under * 'Extending and Embedding' and 'Python/C API' at * docs.python.org . */ static PyMethodDef LogitMethods[] = { {NULL, NULL, 0, NULL} }; /* The loop definition must precede the PyMODINIT_FUNC. */ static void double_logit(char **args, npy_intp *dimensions, npy_intp* steps, void* data) { npy_intp i; npy_intp n = dimensions[0]; char *in = args[0], *out = args[1]; npy_intp in_step = steps[0], out_step = steps[1]; double tmp; for (i = 0; i < n; i++) { /*BEGIN main ufunc computation*/ tmp = *(double *)in; tmp /= 1-tmp; *((double *)out) = log(tmp); /*END main ufunc computation*/ in += in_step; out += out_step; } } /*This a pointer to the above function*/ PyUFuncGenericFunction funcs[1] = {&double_logit}; /* These are the input and return dtypes of logit.*/ static char types[2] = {NPY_DOUBLE, NPY_DOUBLE}; static void *data[1] = {NULL}; #if PY_VERSION_HEX >= 0x03000000 static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "npufunc", NULL, -1, LogitMethods, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit_npufunc(void) { PyObject *m, *logit, *d; m = PyModule_Create(&moduledef); if (!m) { return NULL; } import_array(); import_umath(); logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1, PyUFunc_None, "logit", "logit_docstring", 0); d = PyModule_GetDict(m); PyDict_SetItemString(d, "logit", logit); Py_DECREF(logit); return m; } #else PyMODINIT_FUNC initnpufunc(void) { PyObject *m, *logit, *d; m = Py_InitModule("npufunc", LogitMethods); if (m == NULL) { return; } import_array(); import_umath(); logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 1, 1, PyUFunc_None, "logit", "logit_docstring", 0); d = PyModule_GetDict(m); PyDict_SetItemString(d, "logit", logit); Py_DECREF(logit); } #endif
这是一个setup.py文件的上述代码。和以前一样,模块可以通过在命令提示符处调用python setup.py build来构建,或通过python setup.py install安装到site-packages。
''' setup.py file for logit.c Note that since this is a numpy extension we use numpy.distutils instead of distutils from the python standard library. Calling $python setup.py build_ext --inplace will build the extension library in the current file. Calling $python setup.py build will build a file that looks like ./build/lib*, where lib* is a file that begins with lib. The library will be in this file and end with a C library extension, such as .so Calling $python setup.py install will install the module in your site-packages file. See the distutils section of 'Extending and Embedding the Python Interpreter' at docs.python.org and the documentation on numpy.distutils for more information. ''' def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('npufunc_directory', parent_package, top_path) config.add_extension('npufunc', ['single_type_logit.c']) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(configuration=configuration)
以上安装后,可以如下导入和使用。
>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([ -inf, -1.09861229, 0. , 1.09861229, inf])
Example NumPy ufunc with multiple dtypes¶
我们最后给出一个完整的ufunc的例子,内部循环为半浮动,浮动,双打和长双打。如在前面的部分,我们首先给出.c文件,然后相应的setup.py文件。
代码中对应于ufunc的实际计算的位置用/ * BEGIN主ufunc计算* /和/ * END main ufunc计算* /来标记。这些行之间的代码是必须更改的主要事情,以创建自己的ufunc。
#include "Python.h" #include "math.h" #include "numpy/ndarraytypes.h" #include "numpy/ufuncobject.h" #include "numpy/halffloat.h" /* * multi_type_logit.c * This is the C code for creating your own * NumPy ufunc for a logit function. * * Each function of the form type_logit defines the * logit function for a different numpy dtype. Each * of these functions must be modified when you * create your own ufunc. The computations that must * be replaced to create a ufunc for * a different function are marked with BEGIN * and END. * * Details explaining the Python-C API can be found under * 'Extending and Embedding' and 'Python/C API' at * docs.python.org . * */ static PyMethodDef LogitMethods[] = { {NULL, NULL, 0, NULL} }; /* The loop definitions must precede the PyMODINIT_FUNC. */ static void long_double_logit(char **args, npy_intp *dimensions, npy_intp* steps, void* data) { npy_intp i; npy_intp n = dimensions[0]; char *in = args[0], *out=args[1]; npy_intp in_step = steps[0], out_step = steps[1]; long double tmp; for (i = 0; i < n; i++) { /*BEGIN main ufunc computation*/ tmp = *(long double *)in; tmp /= 1-tmp; *((long double *)out) = logl(tmp); /*END main ufunc computation*/ in += in_step; out += out_step; } } static void double_logit(char **args, npy_intp *dimensions, npy_intp* steps, void* data) { npy_intp i; npy_intp n = dimensions[0]; char *in = args[0], *out = args[1]; npy_intp in_step = steps[0], out_step = steps[1]; double tmp; for (i = 0; i < n; i++) { /*BEGIN main ufunc computation*/ tmp = *(double *)in; tmp /= 1-tmp; *((double *)out) = log(tmp); /*END main ufunc computation*/ in += in_step; out += out_step; } } static void float_logit(char **args, npy_intp *dimensions, npy_intp* steps, void* data) { npy_intp i; npy_intp n = dimensions[0]; char *in=args[0], *out = args[1]; npy_intp in_step = steps[0], out_step = steps[1]; float tmp; for (i = 0; i < n; i++) { /*BEGIN main ufunc computation*/ tmp = *(float *)in; tmp /= 1-tmp; *((float *)out) = logf(tmp); /*END main ufunc computation*/ in += in_step; out += out_step; } } static void half_float_logit(char **args, npy_intp *dimensions, npy_intp* steps, void* data) { npy_intp i; npy_intp n = dimensions[0]; char *in = args[0], *out = args[1]; npy_intp in_step = steps[0], out_step = steps[1]; float tmp; for (i = 0; i < n; i++) { /*BEGIN main ufunc computation*/ tmp = *(npy_half *)in; tmp = npy_half_to_float(tmp); tmp /= 1-tmp; tmp = logf(tmp); *((npy_half *)out) = npy_float_to_half(tmp); /*END main ufunc computation*/ in += in_step; out += out_step; } } /*This gives pointers to the above functions*/ PyUFuncGenericFunction funcs[4] = {&half_float_logit, &float_logit, &double_logit, &long_double_logit}; static char types[8] = {NPY_HALF, NPY_HALF, NPY_FLOAT, NPY_FLOAT, NPY_DOUBLE,NPY_DOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE}; static void *data[4] = {NULL, NULL, NULL, NULL}; #if PY_VERSION_HEX >= 0x03000000 static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "npufunc", NULL, -1, LogitMethods, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit_npufunc(void) { PyObject *m, *logit, *d; m = PyModule_Create(&moduledef); if (!m) { return NULL; } import_array(); import_umath(); logit = PyUFunc_FromFuncAndData(funcs, data, types, 4, 1, 1, PyUFunc_None, "logit", "logit_docstring", 0); d = PyModule_GetDict(m); PyDict_SetItemString(d, "logit", logit); Py_DECREF(logit); return m; } #else PyMODINIT_FUNC initnpufunc(void) { PyObject *m, *logit, *d; m = Py_InitModule("npufunc", LogitMethods); if (m == NULL) { return; } import_array(); import_umath(); logit = PyUFunc_FromFuncAndData(funcs, data, types, 4, 1, 1, PyUFunc_None, "logit", "logit_docstring", 0); d = PyModule_GetDict(m); PyDict_SetItemString(d, "logit", logit); Py_DECREF(logit); } #endif
这是一个setup.py文件的上述代码。和以前一样,模块可以通过在命令提示符处调用python setup.py build来构建,或通过python setup.py install安装到site-packages。
''' setup.py file for logit.c Note that since this is a numpy extension we use numpy.distutils instead of distutils from the python standard library. Calling $python setup.py build_ext --inplace will build the extension library in the current file. Calling $python setup.py build will build a file that looks like ./build/lib*, where lib* is a file that begins with lib. The library will be in this file and end with a C library extension, such as .so Calling $python setup.py install will install the module in your site-packages file. See the distutils section of 'Extending and Embedding the Python Interpreter' at docs.python.org and the documentation on numpy.distutils for more information. ''' def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration from numpy.distutils.misc_util import get_info #Necessary for the half-float d-type. info = get_info('npymath') config = Configuration('npufunc_directory', parent_package, top_path) config.add_extension('npufunc', ['multi_type_logit.c'], extra_info=info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(configuration=configuration)
以上安装后,可以如下导入和使用。
>>> import numpy as np
>>> import npufunc
>>> npufunc.logit(0.5)
0.0
>>> a = np.linspace(0,1,5)
>>> npufunc.logit(a)
array([ -inf, -1.09861229, 0. , 1.09861229, inf])
Example NumPy ufunc with multiple arguments/return values¶
我们的最后一个例子是一个带有多个参数的ufunc。它是具有单个dtype的数据的logit ufunc的代码的修改。我们计算(A * B,logit(A * B))。
我们只给出C代码,因为setup.py文件与一个dtype的示例NumPy ufunc中的setup.py文件完全相同,除了行
config.add_extension('npufunc', ['single_type_logit.c'])
替换为
config.add_extension('npufunc', ['multi_arg_logit.c'])
C文件如下。生成的ufunc需要两个参数A和B.它返回一个元组,其第一个元素是A * B,它的第二个元素是logit(A * B)。请注意,它自动支持广播,以及ufunc的所有其他属性。
#include "Python.h" #include "math.h" #include "numpy/ndarraytypes.h" #include "numpy/ufuncobject.h" #include "numpy/halffloat.h" /* * multi_arg_logit.c * This is the C code for creating your own * NumPy ufunc for a multiple argument, multiple * return value ufunc. The places where the * ufunc computation is carried out are marked * with comments. * * Details explaining the Python-C API can be found under * 'Extending and Embedding' and 'Python/C API' at * docs.python.org . * */ static PyMethodDef LogitMethods[] = { {NULL, NULL, 0, NULL} }; /* The loop definition must precede the PyMODINIT_FUNC. */ static void double_logitprod(char **args, npy_intp *dimensions, npy_intp* steps, void* data) { npy_intp i; npy_intp n = dimensions[0]; char *in1 = args[0], *in2 = args[1]; char *out1 = args[2], *out2 = args[3]; npy_intp in1_step = steps[0], in2_step = steps[1]; npy_intp out1_step = steps[2], out2_step = steps[3]; double tmp; for (i = 0; i < n; i++) { /*BEGIN main ufunc computation*/ tmp = *(double *)in1; tmp *= *(double *)in2; *((double *)out1) = tmp; *((double *)out2) = log(tmp/(1-tmp)); /*END main ufunc computation*/ in1 += in1_step; in2 += in2_step; out1 += out1_step; out2 += out2_step; } } /*This a pointer to the above function*/ PyUFuncGenericFunction funcs[1] = {&double_logitprod}; /* These are the input and return dtypes of logit.*/ static char types[4] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE}; static void *data[1] = {NULL}; #if PY_VERSION_HEX >= 0x03000000 static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "npufunc", NULL, -1, LogitMethods, NULL, NULL, NULL, NULL }; PyMODINIT_FUNC PyInit_npufunc(void) { PyObject *m, *logit, *d; m = PyModule_Create(&moduledef); if (!m) { return NULL; } import_array(); import_umath(); logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2, PyUFunc_None, "logit", "logit_docstring", 0); d = PyModule_GetDict(m); PyDict_SetItemString(d, "logit", logit); Py_DECREF(logit); return m; } #else PyMODINIT_FUNC initnpufunc(void) { PyObject *m, *logit, *d; m = Py_InitModule("npufunc", LogitMethods); if (m == NULL) { return; } import_array(); import_umath(); logit = PyUFunc_FromFuncAndData(funcs, data, types, 1, 2, 2, PyUFunc_None, "logit", "logit_docstring", 0); d = PyModule_GetDict(m); PyDict_SetItemString(d, "logit", logit); Py_DECREF(logit); } #endif
Example NumPy ufunc with structured array dtype arguments¶
此示例显示如何为结构化数组dtype创建ufunc。对于这个例子,我们显示了一个简单的ufunc,用于添加两个数组dtype'u8,u8,u8'。该过程与其他示例有点不同,因为调用PyUFunc_FromFuncAndData不会为自定义dtypes和结构化数组dty完全注册ufunc。我们还需要调用PyUFunc_RegisterLoopForDescr来完成ufunc的设置。
我们只给出C代码,因为setup.py文件与一个dtype的示例NumPy ufunc中的setup.py文件完全相同,除了行
config.add_extension('npufunc', ['single_type_logit.c'])
替换为
config.add_extension('npufunc', ['add_triplet.c'])
C文件如下。
#include "Python.h" #include "math.h" #include "numpy/ndarraytypes.h" #include "numpy/ufuncobject.h" #include "numpy/npy_3kcompat.h" /* * add_triplet.c * This is the C code for creating your own * NumPy ufunc for a structured array dtype. * * Details explaining the Python-C API can be found under * 'Extending and Embedding' and 'Python/C API' at * docs.python.org . */ static PyMethodDef StructUfuncTestMethods[] = { {NULL, NULL, 0, NULL} }; /* The loop definition must precede the PyMODINIT_FUNC. */ static void add_uint64_triplet(char **args, npy_intp *dimensions, npy_intp* steps, void* data) { npy_intp i; npy_intp is1=steps[0]; npy_intp is2=steps[1]; npy_intp os=steps[2]; npy_intp n=dimensions[0]; uint64_t *x, *y, *z; char *i1=args[0]; char *i2=args[1]; char *op=args[2]; for (i = 0; i < n; i++) { x = (uint64_t*)i1; y = (uint64_t*)i2; z = (uint64_t*)op; z[0] = x[0] + y[0]; z[1] = x[1] + y[1]; z[2] = x[2] + y[2]; i1 += is1; i2 += is2; op += os; } } /* This a pointer to the above function */ PyUFuncGenericFunction funcs[1] = {&add_uint64_triplet}; /* These are the input and return dtypes of add_uint64_triplet. */ static char types[3] = {NPY_UINT64, NPY_UINT64, NPY_UINT64}; static void *data[1] = {NULL}; #if defined(NPY_PY3K) static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "struct_ufunc_test", NULL, -1, StructUfuncTestMethods, NULL, NULL, NULL, NULL }; #endif #if defined(NPY_PY3K) PyMODINIT_FUNC PyInit_struct_ufunc_test(void) #else PyMODINIT_FUNC initstruct_ufunc_test(void) #endif { PyObject *m, *add_triplet, *d; PyObject *dtype_dict; PyArray_Descr *dtype; PyArray_Descr *dtypes[3]; #if defined(NPY_PY3K) m = PyModule_Create(&moduledef); #else m = Py_InitModule("struct_ufunc_test", StructUfuncTestMethods); #endif if (m == NULL) { #if defined(NPY_PY3K) return NULL; #else return; #endif } import_array(); import_umath(); /* Create a new ufunc object */ add_triplet = PyUFunc_FromFuncAndData(NULL, NULL, NULL, 0, 2, 1, PyUFunc_None, "add_triplet", "add_triplet_docstring", 0); dtype_dict = Py_BuildValue("[(s, s), (s, s), (s, s)]", "f0", "u8", "f1", "u8", "f2", "u8"); PyArray_DescrConverter(dtype_dict, &dtype); Py_DECREF(dtype_dict); dtypes[0] = dtype; dtypes[1] = dtype; dtypes[2] = dtype; /* Register ufunc for structured dtype */ PyUFunc_RegisterLoopForDescr(add_triplet, dtype, &add_uint64_triplet, dtypes, NULL); d = PyModule_GetDict(m); PyDict_SetItemString(d, "add_triplet", add_triplet); Py_DECREF(add_triplet); #if defined(NPY_PY3K) return m; #endif }
PyUFunc_FromFuncAndData Specification¶
以下是PyUFunc_FromFuncAndData的完整规范,它自动从具有正确签名的C函数生成ufunc。
PyObject * PyUFunc_FromFuncAndData(PyUFuncGenericFunction * func,
void ** data,char * types,int ntypes,int nin,int nout,int identity,
char * name,char * doc,int unused)
func
指向要使用的1-d数组的指针。此数组必须至少为ntypes长。数组中的每个条目必须是
PyUFuncGenericFunction
函数。此函数具有以下签名。还给出了有效的1d循环函数的示例。void loop1d(char ** args,npy_intp * dimensions,
npy_intp * steps,void * data)
args
指向输入和输出数组的实际数据的指针数组。首先给出输入参数,然后是输出参数。尺寸
指向此函数循环的维度大小的指针。steps
指向要为每个输入和输出参数在此维度中的下一个元素跳转的字节数的指针。data
可以与ufunc一起存储并在调用时传入的任意数据(额外参数,函数名称,等。)。static void double_add(char *args, npy_intp *dimensions, npy_intp *steps, void *extra) { npy_intp i; npy_intp is1 = steps[0], is2 = steps[1]; npy_intp os = steps[2], n = dimensions[0]; char *i1 = args[0], *i2 = args[1], *op = args[2]; for (i = 0; i < n; i++) { *((double *)op) = *((double *)i1) + *((double *)i2); i1 += is1; i2 += is2; op += os; } }
data
数据组。应该有ntypes条目(或NULL) - 为此ufunc定义的每个循环函数一个。该数据将被传递到1-d循环。该数据变量的一个常见用途是传递实际函数以在使用通用1-d循环(例如PyUFunc_d_d
)时调用以计算结果。类型
类型号签名的数组(类型
char
)。此数组的大小应为(nin + nout)* ntypes,并包含相应的1-d循环的数据类型。输入应首先跟随输出。例如,假设我有一个支持1整数和1个双1-d循环(长度2 func和数据数组)的ufunc,它需要2个输入并返回一个总是一个复数double的输出,那么类型数组将是static char types[3] = {NPY_INT, NPY_DOUBLE, NPY_CDOUBLE}
如果需要,也可以使用位宽名称(例如
NPY_INT32
,NPY_COMPLEX128
)。ntypes
支持的数据类型的数量。这等于提供的1-d环的数量。nin
输入参数的数量。nout
输出参数的数量。身份
PyUFunc_One
,PyUFunc_Zero
,PyUFunc_None
。这指定了当将空数组传递给ufunc的reduce方法时应返回的内容。名称
ANULL
- 终止字符串,提供此ufunc的名称(应为将调用的Python名称)。doc
此ufunc的文档字符串(将用于生成对{ufunc_name}.__doc__
的响应)。不要包括函数签名或名称,因为这是自动生成的。未使用
没用过;保持兼容性。只需将其设置为零。
返回的ufunc对象是一个可调用的Python对象。它应该放在一个(模块)字典中,使用的名称与ufunc-creation例程的name参数中使用的名称相同。下面的示例是从umath模块中修改的
static PyUFuncGenericFunction atan2_functions[] = { PyUFunc_ff_f, PyUFunc_dd_d, PyUFunc_gg_g, PyUFunc_OO_O_method}; static void* atan2_data[] = { (void *)atan2f,(void *) atan2, (void *)atan2l,(void *)"arctan2"}; static char atan2_signatures[] = { NPY_FLOAT, NPY_FLOAT, NPY_FLOAT, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE, NPY_LONGDOUBLE NPY_OBJECT, NPY_OBJECT, NPY_OBJECT}; ... /* in the module initialization code */ PyObject *f, *dict, *module; ... dict = PyModule_GetDict(module); ... f = PyUFunc_FromFuncAndData(atan2_functions, atan2_data, atan2_signatures, 4, 2, 1, PyUFunc_None, "arctan2", "a safe and correct arctan(x1/x2)", 0); PyDict_SetItemString(dict, "arctan2", f); Py_DECREF(f); ...