Spark 概述

Apache Spark 是一个快速的, 多用途的集群计算系统。 它提供了 Java, Scala, Python 和 R 的高级 API,以及一个支持通用的执行图计算的优化过的引擎. 它还支持一组丰富的高级工具, 包括使用 SQL 处理结构化数据处理的 Spark SQL, 用于机器学习的 MLlib, 用于图计算的 GraphX, 以及 Spark Streaming

下载

从该项目官网的 下载页面 获取 Spark. 该文档用于 Spark 2.2.0 版本. Spark可以通过Hadoop client库使用HDFS和YARN.下载一个预编译主流Hadoop版本比较麻烦. 用户可以下载一个编译好的Hadoop版本, 并且可以 通过设置 Spark 的 classpath 来与任何的 Hadoop 版本一起运行 Spark. Scala 和 Java 用户可以在他们的工程中通过Maven的方式引入 Spark, 并且在将来 Python 用户也可以从 PyPI 中安装 Spark。

如果您希望从源码中编译一个Spark, 请访问 编译 Spark.

Spark可以在windows和unix类似的系统(例如, Linux, Mac OS)上运行。它可以很容易的在一台本地机器上运行 -你只需要安装一个JAVA环境并配置PATH环境变量,或者让JAVA_HOME指向你的JAVA安装路径

Spark 可运行在 Java 8+, Python 2.7+/3.4+ 和 R 3.1+ 的环境上。针对 Scala API, Spark 2.2.0 使用了 Scala 2.11. 您将需要去使用一个可兼容的 Scala 版本 (2.11.x).

请注意, 从 Spark 2.2.0 起, 对 Java 7, Python 2.6 和旧的 Hadoop 2.6.5 之前版本的支持均已被删除.

请注意, Scala 2.10 的支持已经不再适用于 Spark 2.1.0, 可能会在 Spark 2.3.0 中删除。

运行示例和 Shell

Spark 自带了几个示例程序. Scala, Java, Python 和 R 示例在 examples/src/main 目录中. 要运行 Java 或 Scala 中的某个示例程序, 在最顶层的 Spark 目录中使用 bin/run-example <class> [params] 命令即可.(这个命令底层调用了 spark-submit 脚本去加载应用程序)。例如,

./bin/run-example SparkPi 10

您也可以通过一个改进版的 Scala shell 来运行交互式的 Spark。这是一个来学习该框架比较好的方式。

./bin/spark-shell --master local[2]

--master选项可以指定为 针对分布式集群的 master URL, 或者 以local模式 使用 1 个线程在本地运行, local[N] 会使用 N 个线程在本地运行.你应该先使用local模式进行测试. 可以通过–help指令来获取spark-shell的所有配置项. Spark 同样支持 Python API。在 Python interpreter(解释器)中运行交互式的 Spark, 请使用 bin/pyspark:

./bin/pyspark --master local[2]

Python 中也提供了应用示例。例如,

./bin/spark-submit examples/src/main/python/pi.py 10

从 1.4 开始(仅包含了 DataFrames APIs)Spark 也提供了一个用于实验性的 R API。 为了在 R interpreter(解释器)中运行交互式的 Spark, 请执行 bin/sparkR:

./bin/sparkR --master local[2]

R 中也提供了应用示例。例如,

./bin/spark-submit examples/src/main/r/dataframe.R

在集群上运行

该 Spark 集群模式概述 说明了在集群上运行的主要的概念。 Spark 既可以独立运行, 也可以在一些现有的 Cluster Manager(集群管理器)上运行。它当前提供了几种用于部署的选项: