The API of FlagSet
instances.
An abstract type representing sets of flags (like private, final, etc.
All possible values that can constitute flag sets.
A module that contains all possible values that can constitute flag sets.
A tag that preserves the identity of the FlagSet
abstract type from erasure.
A tag that preserves the identity of the FlagSet
abstract type from erasure.
Can be used for pattern matching, instance tests, serialization and likes.
The empty set of flags
The API of FlagSet
instances.
Test two objects for inequality.
Test two objects for inequality.
true
if !(this == that), false otherwise.
Equivalent to x.hashCode
except for boxed numeric types and null
.
Equivalent to x.hashCode
except for boxed numeric types and null
.
For numerics, it returns a hash value which is consistent
with value equality: if two value type instances compare
as true, then ## will produce the same hash value for each
of them.
For null
returns a hashcode where null.hashCode
throws a
NullPointerException
.
a hash value consistent with ==
Test two objects for equality.
Test two objects for equality.
The expression x == that
is equivalent to if (x eq null) that eq null else x.equals(that)
.
true
if the receiver object is equivalent to the argument; false
otherwise.
Cast the receiver object to be of type T0
.
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics.
Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at
runtime, while the expression List(1).asInstanceOf[List[String]]
will not.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the requested type.
the receiver object.
if the receiver object is not an instance of the erasure of type T0
.
Create a copy of the receiver object.
Tests whether the argument (arg0
) is a reference to the receiver object (this
).
Tests whether the argument (arg0
) is a reference to the receiver object (this
).
The eq
method implements an equivalence relation on
non-null instances of AnyRef
, and has three additional properties:
x
and y
of type AnyRef
, multiple invocations of
x.eq(y)
consistently returns true
or consistently returns false
.x
of type AnyRef
, x.eq(null)
and null.eq(x)
returns false
.null.eq(null)
returns true
. When overriding the equals
or hashCode
methods, it is important to ensure that their behavior is
consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they
should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).
true
if the argument is a reference to the receiver object; false
otherwise.
The equality method for reference types.
Called by the garbage collector on the receiver object when there are no more references to the object.
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the finalize
method is invoked, as
well as the interaction between finalize
and non-local returns
and exceptions, are all platform dependent.
Returns string formatted according to given format
string.
Returns string formatted according to given format
string.
Format strings are as for String.format
(@see java.lang.String.format).
A representation that corresponds to the dynamic class of the receiver object.
A representation that corresponds to the dynamic class of the receiver object.
The nature of the representation is platform dependent.
a representation that corresponds to the dynamic class of the receiver object.
not specified by SLS as a member of AnyRef
The hashCode method for reference types.
Test whether the dynamic type of the receiver object is T0
.
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics.
Therefore the expression 1.isInstanceOf[String]
will return false
, while the
expression List(1).isInstanceOf[List[String]]
will return true
.
In the latter example, because the type argument is erased as part of compilation it is
not possible to check whether the contents of the list are of the specified type.
true
if the receiver object is an instance of erasure of type T0
; false
otherwise.
Equivalent to !(this eq that)
.
Equivalent to !(this eq that)
.
true
if the argument is not a reference to the receiver object; false
otherwise.
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
not specified by SLS as a member of AnyRef
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
not specified by SLS as a member of AnyRef
Creates a String representation of this object.
Creates a String representation of this object. The default representation is platform dependent. On the java platform it is the concatenation of the class name, "@", and the object's hashcode in hexadecimal.
a String representation of the object.
(flagSets: StringAdd).self
(flagSets: StringFormat).self
(flagSets: ArrowAssoc[FlagSets]).x
(Since version 2.10.0) Use leftOfArrow
instead
(flagSets: Ensuring[FlagSets]).x
(Since version 2.10.0) Use resultOfEnsuring
instead
Implicit values that provide ClassTags
for the reflection
classes. These are abstract in the interface but are later filled in to provide ClassTags
for the either the runtime reflection or macros entities, depending on the use.
EXPERIMENTAL
The trait that defines flag sets and operations on them.
Flag
s are used to provide modifiers for abstract syntax trees that represent definitions via theflags
field of scala.reflect.api.Trees#Modifiers. Trees that accept modifiers are:For example, to create a class named
C
one would write something like:ClassDef(Modifiers(NoFlags), newTypeName("C"), Nil, ...)
Here, the flag set is empty.
To make
C
private, one would write something like:ClassDef(Modifiers(PRIVATE), newTypeName("C"), Nil, ...)
Flags can also be combined with the vertical bar operator (
|
). For example, a private final class is written something like:ClassDef(Modifiers(PRIVATE | FINAL), newTypeName("C"), Nil, ...)
The list of all available flags is defined in scala.reflect.api.FlagSets#FlagValues, available via scala.reflect.api.FlagSets#Flag. (Typically one writes a wildcard import for this, e.g.
import scala.reflect.runtime.universe.Flag._
).Definition trees are compiled down to symbols, so flags on modifiers of these trees are transformed into flags on the resulting symbols. Unlike trees, symbols don't expose flags, but rather provide
isXXX
test methods (e.g.isFinal
can be used to test finality). These test methods might require an upcast withasTerm
,asType
orasClass
as some flags only make sense for certain kinds of symbols.Of Note: This part of the Reflection API is being considered as a candidate for redesign. It is quite possible that in future releases of the reflection API, flag sets could be replaced with something else.
For more details about
FlagSet
s and other aspects of Scala reflection, see the Reflection Guide