A multi-bucket values source based aggregation,可以应用于从文档中提取的数值。它会动态地在值上构建固定大小(a.k.a.interval)桶。例如,如果文档有一个包含价格的字段(数值),我们可以配置这个聚合来动态地构建带间隔5的bucket(比如价格可能代表$ 5),当聚合执行时,每个文档的价格字段将被评估,并将四舍五入到最接近的bucket,例如,如果价格是32,而bucket(桶)的大小是5,那么四舍五入将产生30,因此,文档将“掉落”到与关键30相关的bucket(桶)中,为了使这更正式,这里是使用的如下计算公式:
bucket_key = Math.floor((value - offset) / interval) * interval + offset
interval必须是正数,而offset(偏移量)必须是小数[0, interval[
.
下面的代码片段“bucket”基于价格的间隔为50
POST /sales/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50
}
}
}
}
可能返回以下结果:
{
...
"aggregations": {
"prices" : {
"buckets": [
{
"key": 0.0,
"doc_count": 1
},
{
"key": 50.0,
"doc_count": 1
},
{
"key": 100.0,
"doc_count": 0
},
{
"key": 150.0,
"doc_count": 2
},
{
"key": 200.0,
"doc_count": 3
}
]
}
}
}
上面的结果显示,没有任何文档的价格在[100 - 150)范围内。默认情况下,返回结果将用空桶填充直方图中的空白。由于min_doc_count设置,可能会更改这个和请求桶的最小值,这是由min_doc_count设置:
POST /sales/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"min_doc_count" : 1
}
}
}
}
返回结果:
{
...
"aggregations": {
"prices" : {
"buckets": [
{
"key": 0.0,
"doc_count": 1
},
{
"key": 50.0,
"doc_count": 1
},
{
"key": 150.0,
"doc_count": 2
},
{
"key": 200.0,
"doc_count": 3
}
]
}
}
}
默认情况下,histogram返回数据本身范围内的所有bucket,也就是说,具有最小值(使用直方图)的文档将确定最小的bucket(带有最小键的bucket),具有最高值的文档将确定最大的bucket(具有最高键的bucket)。通常,当请求空buckets时,这会造成混乱,特别是当数据被过滤时。
为了说明原因,让我们来看一下列子:
假设你正在过滤您的请求,以获取值在0到500之间的所有文档,此外,您还希望使用直方图来将数据切片,其中间隔为50,您还要指定“min_doc_count”:0,因为您希望获得所有的桶,即使是空的。如果发生这种情况,所有产品(文件)的价格都高于100,你将获得的第一个bucket将是一个100的key,这是令人困惑的,很多次,你还想把这些桶放在0到100之间。
通过使用extended_bounds设置,现在,您可以“强制”直方图聚合来开始在特定的min值上构建bucket,并且还可以继续构建到最大值的bucket(即使没有文档了),当min_doc_count为0时,使用extended_bounds才有意义(如果min_doc_count大于0,则永远不会返回空buckets)
注意,(顾名思义)extended_bounds不是过滤buckets。意味着,如果extended_bounds.min高于从文档中提取的值。这些文件仍将决定第一个bucket将是什么(对于extended_bounds.max和最后一个bucket也是一样),对于filtering buckets,应使用适当的from/to设置将范围过滤器聚合下的直方图聚合嵌套。
例子:
POST /sales/_search?size=0
{
"query" : {
"constant_score" : { "filter": { "range" : { "price" : { "to" : "500" } } } }
},
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"extended_bounds" : {
"min" : 0,
"max" : 500
}
}
}
}
}
默认情况下,返回的bucket按它们的key升序排序,尽管顺序行为可以通过order设置来控制。
按键降序排列桶:
POST /sales/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "_key" : "desc" }
}
}
}
}
按其doc_count - 升序排列:
POST /sales/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "_count" : "asc" }
}
}
}
}
If the histogram aggregation has a direct metrics sub-aggregation, 则后者可以确定桶的顺序:
POST /sales/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "price_stats.min" : "asc" } #1
},
"aggs" : {
"price_stats" : { "stats" : {"field" : "price"} }
}
}
}
}
路径必须以下列形式定义:
AGG_SEPARATOR = '>' ;
METRIC_SEPARATOR = '.' ;
AGG_NAME = <the name of the aggregation> ;
METRIC = <the name of the metric (in case of multi-value metrics aggregation)> ;
PATH = <AGG_NAME> [ <AGG_SEPARATOR>, <AGG_NAME> ]* [ <METRIC_SEPARATOR>, <METRIC> ] ;
POST /sales/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "promoted_products>rating_stats.avg" : "desc" }
},
"aggs" : {
"promoted_products" : {
"filter" : { "term" : { "promoted" : true }},
"aggs" : {
"rating_stats" : { "stats" : { "field" : "rating" }}
}
}
}
}
}
}
上述将根据促销产品的平均评级对桶进行排序
默认情况下,bucket键以0开始,然后以interval间隔均匀分布,例如,如果间隔为10,则第一个桶(假设里面有数据)将为[0 - 9],[10-19],[20-29],可以使用offset选项来改变bucket的边界。
这可以用一个例子来说明,如果有10个值从5到14的文档,使用interval10将产生两个bucket,每个bucket包含5个文档,如果使用附加的offset为5,则只有一个包含所有10个文档的单个bucket[5-14]。
默认情况下,buckets作为有序数组返回,还可以将响应请求为哈希,而不是用bucket键。
POST /sales/_search?size=0
{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"keyed" : true
}
}
}
}
响应结果:
{
...
"aggregations": {
"prices": {
"buckets": {
"0.0": {
"key": 0.0,
"doc_count": 1
},
"50.0": {
"key": 50.0,
"doc_count": 1
},
"100.0": {
"key": 100.0,
"doc_count": 0
},
"150.0": {
"key": 150.0,
"doc_count": 2
},
"200.0": {
"key": 200.0,
"doc_count": 3
}
}
}
}
}
missing的参数定义了如何处理缺少值的文档,默认情况下,它们将被忽略,但也有可能将它们视为具有值
POST /sales/_search?size=0
{
"aggs" : {
"quantity" : {
"histogram" : {
"field" : "quantity",
"interval": 10,
"missing": 0 #1
}
}
}
}
#1 quantity字段没有值的文档将落入与文档相同的bucket中
#1 值为0