np.logspace(2.0, 3.0, num=4) # array([ 100. , 215.443469 , 464.15888336, 1000. ]) np.logspace(2.0, 3.0, num=4, endpoint=False) # array([ 100. , 177.827941 , 316.22776602, 562.34132519]) np.logspace(2.0, 3.0, num=4, base=2.0) # array([ 4. , 5.0396842 , 6.34960421, 8. ]) # Graphical illustration: import matplotlib.pyplot as plt N = 10 x1 = np.logspace(0.1, 1, N, endpoint=True) x2 = np.logspace(0.1, 1, N, endpoint=False) y = np.zeros(N) plt.plot(x1, y, 'o') # [] plt.plot(x2, y + 0.5, 'o') # [] plt.ylim([-0.5, 1]) # (-0.5, 1) plt.show()